Microbiota-induced obesity requires farnesoid X receptor
نویسندگان
چکیده
OBJECTIVE The gut microbiota has been implicated as an environmental factor that modulates obesity, and recent evidence suggests that microbiota-mediated changes in bile acid profiles and signalling through the bile acid nuclear receptor farnesoid X receptor (FXR) contribute to impaired host metabolism. Here we investigated if the gut microbiota modulates obesity and associated phenotypes through FXR. DESIGN We fed germ-free (GF) and conventionally raised (CONV-R) wild-type and Fxr-/- mice a high-fat diet (HFD) for 10 weeks. We monitored weight gain and glucose metabolism and analysed the gut microbiota and bile acid composition, beta-cell mass, accumulation of macrophages in adipose tissue, liver steatosis, and expression of target genes in adipose tissue and liver. We also transferred the microbiota of wild-type and Fxr-deficient mice to GF wild-type mice. RESULTS The gut microbiota promoted weight gain and hepatic steatosis in an FXR-dependent manner, and the bile acid profiles and composition of faecal microbiota differed between Fxr-/- and wild-type mice. The obese phenotype in colonised wild-type mice was associated with increased beta-cell mass, increased adipose inflammation, increased steatosis and expression of genes involved in lipid uptake. By transferring the caecal microbiota from HFD-fed Fxr-/- and wild-type mice into GF mice, we showed that the obesity phenotype was transferable. CONCLUSIONS Our results indicate that the gut microbiota promotes diet-induced obesity and associated phenotypes through FXR, and that FXR may contribute to increased adiposity by altering the microbiota composition.
منابع مشابه
Gut–Liver Axis Derangement in Non-Alcoholic Fatty Liver Disease
Non-alcoholic fatty liver disease (NAFLD) is the most frequent type of chronic liver disease in the pediatric age group, paralleling an obesity pandemic. A "multiple-hit" hypothesis has been invoked to explain its pathogenesis. The "first hit" is liver lipid accumulation in obese children with insulin resistance. In the absence of significant lifestyle modifications leading to weight loss and i...
متن کاملFarnesoid X Receptor Signaling Shapes the Gut Microbiota and Controls Hepatic Lipid Metabolism
The gut microbiota modulates obesity and associated metabolic phenotypes in part through intestinal farnesoid X receptor (FXR) signaling. Glycine-β-muricholic acid (Gly-MCA), an intestinal FXR antagonist, has been reported to prevent or reverse high-fat diet (HFD)-induced and genetic obesity, insulin resistance, and fatty liver; however, the mechanism by which these phenotypes are improved is n...
متن کاملIntestinal farnesoid X receptor signaling promotes nonalcoholic fatty liver disease.
Nonalcoholic fatty liver disease (NAFLD) is a major worldwide health problem. Recent studies suggest that the gut microbiota influences NAFLD pathogenesis. Here, a murine model of high-fat diet-induced (HFD-induced) NAFLD was used, and the effects of alterations in the gut microbiota on NAFLD were determined. Mice treated with antibiotics or tempol exhibited altered bile acid composition, with ...
متن کاملHepatocyte MyD88 affects bile acids, gut microbiota and metabolome contributing to regulate glucose and lipid metabolism
OBJECTIVE To examine the role of hepatocyte myeloid differentiation primary-response gene 88 (MyD88) on glucose and lipid metabolism. DESIGN To study the impact of the innate immune system at the level of the hepatocyte and metabolism, we generated mice harbouring hepatocyte-specific deletion of MyD88. We investigated the impact of the deletion on metabolism by feeding mice with a normal cont...
متن کاملPersistent Organic Pollutants Modify Gut Microbiota–Host Metabolic Homeostasis in Mice Through Aryl Hydrocarbon Receptor Activation
BACKGROUND Alteration of the gut microbiota through diet and environmental contaminants may disturb physiological homeostasis, leading to various diseases including obesity and type 2 diabetes. Because most exposure to environmentally persistent organic pollutants (POPs) occurs through the diet, the host gastrointestinal tract and commensal gut microbiota are likely to be exposed to POPs. OBJ...
متن کامل